Converting Strings to Date Format in Spark SQL: Techniques and Tips

Dealing with date and time data can often be a very critical aspect of data processing and analytics. When it comes to handling date formats in big data processing with Apache Spark, programmers and data engineers often find themselves converting strings to date objects that are more workable within the Spark SQL module. In this article, we will explore several techniques and tips for converting strings to standardized date formats when working with Spark SQL using the Scala programming language.

Understanding Spark SQL and Date Types

Before diving into the different methods of converting string data to date formats, it’s important to understand how Spark SQL handles date and time data. Spark SQL provides a ‘date’ data type that corresponds to a SQL DATE and represents a calendar date (year, month, and day) without a time of day. There is also a ‘timestamp’ data type which includes both date and time information.

Configuring SparkSession

Your first step with any Spark SQL operation is to create a SparkSession, which is the entry point for programming Spark with the Dataset and DataFrame API. The SparkSession will be used to handle configuration settings for Spark. Here’s how you can create a SparkSession in Scala:


import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder()
  .appName("StringToDateConversion")
  .config("spark.master", "local")
  .getOrCreate()

With the SparkSession in place, we can now explore different methods of converting string representations of dates into Spark SQL date formats.

Using to_date function

One of the simplest ways to convert a string to a date in Spark SQL is by using the to_date function. This function allows you to specify the format your date string is in and convert it into a date object accordingly.


import spark.implicits._
import org.apache.spark.sql.functions.to_date

val df = Seq("2023-04-01", "2023-04-02").toDF("date_string")
val dfWithDate = df.withColumn("date", to_date($"date_string", "yyyy-MM-dd"))

dfWithDate.show()

Output:


+-----------+----------+
|date_string|      date|
+-----------+----------+
| 2023-04-01|2023-04-01|
| 2023-04-02|2023-04-02|
+-----------+----------+

Handling Different Date Formats

In practice, you may have strings representing dates in various formats. Let’s assume we have dates in the format of ‘MM-dd-yyyy’. You can specify this format in the to_date function as follows:


val df = Seq("04-01-2023", "04-02-2023").toDF("date_string")
val dfWithDate = df.withColumn("date", to_date($"date_string", "MM-dd-yyyy"))

dfWithDate.show()

Output:


+-----------+----------+
|date_string|      date|
+-----------+----------+
| 04-01-2023|2023-04-01|
| 04-02-2023|2023-04-02|
+-----------+----------+

Using unix_timestamp Function

Another approach to convert string to date or timestamp type in Spark SQL is by using the unix_timestamp function in combination with from_unixtime and to_date. The unix_timestamp function converts time string with given pattern ('yyyy-MM-dd HH:mm:ss' by default) to Unix time stamp, and then from_unixtime converts it to a formatted date string, which can finally be converted to a date object with to_date.


import org.apache.spark.sql.functions.{unix_timestamp, from_unixtime}

val df = Seq("04-01-2023 12:01:00", "04-02-2023 12:01:00").toDF("datetime_string")
val dfWithDate = df.withColumn("timestamp", from_unixtime(unix_timestamp($"datetime_string", "MM-dd-yyyy HH:mm:ss")))
                   .withColumn("date", to_date($"timestamp"))

dfWithDate.show()

Output:


+----------------+-------------------+----------+
|datetime_string |timestamp          |date      |
+----------------+-------------------+----------+
|04-01-2023 12:01|2023-04-01 12:01:00|2023-04-01|
|04-02-2023 12:01|2023-04-02 12:01:00|2023-04-02|
+----------------+-------------------+----------+

Dealing with Incorrect Formats and Null Values

It is common to encounter date strings that are in incorrect formats or are null. Let’s see how to handle these cases.

Incorrect Date Formats

When the date format does not match the format specified, the to_date function will return null. You can handle these incorrect formats by using a combination of functions like when and otherwise from Spark SQL’s function library.


import org.apache.spark.sql.functions.when

val df = Seq(("2023-13-01", "yyyy-MM-dd"), ("04-02-2023", "MM-dd-yyyy")).toDF("date_string", "format")
val dfWithDate = df.withColumn("date", when(to_date($"date_string", $"format").isNull, "Invalid Date").otherwise(to_date($"date_string", $"format")))

dfWithDate.show()

Output:


+-----------+-----------+------------+
|date_string|     format|        date|
+-----------+-----------+------------+
| 2023-13-01| yyyy-MM-dd|Invalid Date|
| 04-02-2023| MM-dd-yyyy|  2023-04-02|
+-----------+-----------+------------+

Null Date Strings

When dealing with null date strings, Spark SQL’s to_date will also return null. You can check for these using the isNull function.


val df = Seq((null, "yyyy-MM-dd"), ("04-02-2023", "MM-dd-yyyy")).toDF("date_string", "format")
val dfWithDate = df.withColumn("date", when($"date_string".isNull, "No Date Provided").otherwise(to_date($"date_string", $"format")))

dfWithDate.show()

Output:


+-----------+-----------+----------------+
|date_string|     format|            date|
+-----------+-----------+----------------+
|       null| yyyy-MM-dd|No Date Provided|
| 04-02-2023| MM-dd-yyyy|      2023-04-02|
+-----------+-----------+----------------+

Formatting Dates for Output

Once you have converted your strings to date objects, you might want to format them for display or further processing. This can be accomplished using the date_format function.


import org.apache.spark.sql.functions.date_format

val df = Seq("2023-04-01", "2023-04-02").toDF("date_string")
val dfWithFormattedDate = df.withColumn("formatted_date", date_format(to_date($"date_string", "yyyy-MM-dd"), "dd-MM-yyyy"))

dfWithFormattedDate.show()

Output:


+-----------+--------------+
|date_string|formatted_date|
+-----------+--------------+
| 2023-04-01|    01-04-2023|
| 2023-04-02|    02-04-2023|
+-----------+--------------+

About Editorial Team

Our Editorial Team is made up of tech enthusiasts who are highly skilled in Apache Spark, PySpark, and Machine Learning. They are also proficient in Python, Pandas, R, Hive, PostgreSQL, Snowflake, and Databricks. They aren't just experts; they are passionate teachers. They are dedicated to making complex data concepts easy to understand through engaging and simple tutorials with examples.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top